Sandia
National
Laboratories

Multi-model Analysis of Document Caches

Jeffery Baumes, Timothy Shead, Jason F. Shepherd and Brian Wylie

Abstract—The analysis of networked activities is dramatically more challenging than many traditional kinds of analysis. A network is
defined by a set of entities (people, organizations, banks, computers, etc.) linked by various types of relationships. These entities and
relationships are often uninteresting alone, and only become significant in aggregate. The analysis and visualization of the networks
that are embedded in a document corpus is one of the driving factors behind the creation of our deep text analysis application named
P2 (for Prototype 2). The development of this application utilized the open source Titan Toolkit. The toolkit’s flexible, component
based pipeline provides an excellent platform for constructing specific combinations of network algorithms and visualizations.

Index Terms—informatics; visualization; entities; extraction; graphs; networks; toolkit

1 INTRODUCTION

Our document analysis and clustering application is a stand-alone ap-
plication to organize and classify documents based on their semantic
content and perform named-entity extraction (people, places, etc.) to
allow the exploration of the relationships between entities and doc-
uments. We refer to this application as “Prototype 2 or simply P2.
P2 was developed to merge two normally distinct methods for text
analysis into a single application. Document clustering uses statisti-
cal techniques such as latent semantic analysis (LSA) [8] to automat-
ically detect topic clusters and classify documents under these topics.
This provides a scalable, automated solution for obtaining a high-level
view of the entire set of documents. We may also take advantage of
the distance metric used in clustering to show the amount of similarity
between any two documents in the dataset. The second technique is
named-entity extraction. This enables enhanced searching through a
corpus of documents based on content such as particular locations or
people. In contrast to clustering, entity extraction provides an in-depth
look into the content of individual documents, and can also link docu-
ments containing infrequent and interesting individuals or places. The
challenge for P2 was to integrate information from both clustering and
named entity extraction into a single useful application that incorpo-
rates the strength of each technique. Figure 11 provides a screenshot
of P2.

Contributions This paper makes the following contributions to the
research community:

e We demonstrate the flexibility of the Titan toolkit in performing
text analytic processes.

o Jeffery Baumes is with Kitware Inc., E-mail: jeff.baumes@kitware.com
e Timothy Shead is with Sandia National Laboratories, E-mail:
tshead @sandia.gov
e Jason F. Shepherd is with Sandia National Laboratories, E-mail:
Jfsheph@sandia.gov
e Brian Wylie is with Sandia National Laboratories, E-mail:
bnwylie @sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energys National Nuclear
Security Administration under contract DE-AC04-94AL85000.

o We demonstrate multi-model analysis of a document cache using
a variety of text analytic tools.

e An application for displaying the results of the multi-model anal-
ysis is demonstrated.

This paper is organized as follows. After briefly reviewing previ-
ous work in this area in Section 2 we provide an overview of the Titan
Toolkit in Section 3. We define multi-model analyses and discuss us-
ing datatypes and transformation in a pipeline environment to accom-
plish these analyses in Section 4 along with a discussion on the specific
data analysis types and tasks performed. In Section 5, 6 and 7 we dis-
cuss the creation and setup of the pipeline and the interface presented
to a user. In Section 8 results are examined and recommendations are
made. Sections 9 and 10 present a detailed discussion of the user study
conducted and the future directions for this work, respectively.

2 BACKGROUND AND RELATED WORKS

The field of network analysis and visualization is active and thriving.
There are a large set of existing toolkits and frameworks that provide
feature sets around network visualization and analysis capabilities.

e Prefuse Visualization Toolkit (www.prefuse.org):A Java-based
toolkit for building interactive information visualization appli-
cations [13]. Prefuse provides an effective interaction and ani-
mation infrastructure for building many different types of views
including network/graph diagrams.

e Tulip Toolkit (www.labri.fr/perso/auber/projects/tulip): A C++
toolkit for building interactive information visualization appli-
cations with both 2D and 3D display capability. Tulip imple-
ments some very fast algorithms for graph layout such as HDE
[14]. Tulip also has a plug-in architecture for building and testing
graph and tree layout algorithms.

e JUNG (jung.sourceforge.net): The Java Universal Net-
work/Graph Framework is a software library that provides a
common and extensible language for the modeling, analysis, and
visualization of data that can be represented as a graph or net-
work.

e GraphViz (www.graphviz.org): A set of libraries and executa-
bles, written in C, specifically for the visualization of many dif-
ferent types of graphs [12]. GraphViz mainly has functionality

around static, non-interactive diagram generation. It has high
quality graph layout algorithms and yields especially good re-
sults for directed acyclic graphs.

e InfoVis Toolkit (ivtk.sourceforge.net): A Java-based toolkit to
ease the development of Information Visualization applications
and components [10]. IVTK employs a unified data structure (a
table of columns) for all of its graph, table and tree data in order
to reduce memory footprint and reduce the complexity of filter-
ing, selection and interaction algorithms. The InfoVis Toolkit is
quite popular and allows the integration of several different types
of views.

e InfoVis Cyberinfrastructure (iv.slis.indiana.edu/sw): Like Titan,
this project provides an integration framework for other software
packages. While the IVC framework itself is written in Java,
it aims to allow contributors to integrate algorithms written in
many different languages. The InfoVis Cyberinfrastructure uses
the Eclipse Rich Client Platform for its application framework.

e Piccolo Toolkit (www.cs.umd.edu/hcil/piccolo): Piccolo is a
layer built on top of optimized language-dependent graphics
APIs. Currently supports Java and C# (Piccolo.Java, Pic-
co0lo.NET) [1]. Piccolo provides a built-in zoomable user inter-
face (ZUI) that targets building applications where the user can
transition smoothly from overview to fine detail.

e Pajek (pajek.imfm.si/doku.php) is a program, for Windows, for
analysis and visualization of large networks.

While a majority of information visualization toolkits are written in
Java, Titan is written in C++, allowing it to use a multitude of open
source algorithm libraries, including the Boost Graph Library, Multi-
Threaded Graph Library, Trilinos (Linear Algebra), CLAPACK (Lin-
ear Algebra), and Sandia-developed clustering and statistical Libraries
including Matlab, R, and vtkStatistics [16].

3 TITAN OVERVIEW

The Titan Toolkit [18] uses many of the visualization components in
the open source Visualization Toolkit (VTK) and therefore shares the
same component and pipeline execution model. This pipeline archi-
tecture allows algorithms and visualization to be flexibly combined in
ways specifically focused on the application domain. In addition, the
build system used by Titan (CMake [15]) allows it to be used on a
wide variety of modern operating systems including Microsoft Win-
dows, Macintosh OS X, Linux, and several variants of Unix.

In Titan, data processing components are called filters. Each filter
implements a single algorithm as a C++ class. These filters may be
connected together to form data processing pipelines. Figure 1 pro-
vides an overview of the stages of a typical pipeline. The beginning of
a pipeline consists of data source filters that might read from databases
or files. The output from a source filter is usually processed by fil-
ters that implement data transformations, algorithms, or other analysis
techniques followed by a Titan view for visualization towards the end
of the pipeline. Applications are usually centered on one or more vi-
sualizations and some UI that allows the user to change data sources,
configure filter parameters, or change view settings.

The well-defined and documented APIs associated with the pipeline
components make extending the toolkit straightforward. In most cases
developers take existing filters that have similar interfaces to one that
they wish to develop and use them as a template from which to build
their new filter.

Titan also provides bindings for Python, Tcl, and Java that are auto-
matically generated for every class. This provides the full functionality
of Titan for applications written in these languages. These wrappers
have proven themselves extremely useful for rapid prototyping of ap-
plications and experimental pipelines without the overhead associated
with writing and debugging C++ code.

C
sources database
¥ A 4
readers ! -
«
- .
algorithms e ®
views

T

interact

Fig. 1. Overview of the data flow model used by Titan.

3.0.1

The pipeline architecture used by Titan provides a core set of data
structures that can be passed from component to component. End to
end processing and analysis of data typically involves a comprehensive
set of data structures and transformations.

Datatypes used by the Analysis Pipeline

e Documents: Clearly for our analysis of document caches we
start with documents on disk (or in a database). Those documents
are fed into the appropriate readers/drivers based on mime-type
(MSWord, pdf, email, plain-text,etc). Most of the readers and
database drivers in Titan produce tables.

o Tables: Tables (vtkTables) are the most general storage mecha-
nism in the Titan toolkit and provide named columns of arbitrary
types. In this case we use them to store meta data and text content
of the documents to be analyzed, but in the general case they are
used to store any type of entity attribute data. (example image
here)

e Graphs/Trees: vtkGraph and it’s various subclasses including
vtkTree (see Figure 2) provide functionality around capturing re-
lationships between entities. In additional to capturing topologi-
cal relationships these data structures use vtkTables for attribute
storage, this makes conversion from one form to another straight
forward and efficient. An illustrative use case is described in the
data transformation section below.

e Sparse and Dense Matrices: Tables, documents and other data
structures can be converted to sparse or dense matrix formats to
enable linear algebra to be used to delve more deeply into the
data.

The hierarchy of graph data structures is shown in Figure 2. Blue
classes represent the primary data structures that are passed between
filters as pipeline objects. The subclasses of vtkGraph provide spe-
cialization for graph types such as undirected vs. directed graphs and
trees, etc.

Titan gains several advantages from the use of a class hierarchy for
graph types. Filters that operate on a vtkGraph will work for all graph
types. The use of subclasses also allows filters specific to particular
graph types to be developed, i.e., a filter taking only a directed graph
as input would fail if it was given an undirected graph.

vtkDirectedGraph vtkUndirectedGraph

vtkDirectedAcyclicGraph

vtkTree

vtkMutableDirectedGraph

vtkMutableUndirectedGraph

Fig. 2. Hierarchy of Titan graph classes.

The Titan graph data structures in blue also enforce the criterion
that the data must be valid at all times. The separate, mutable classes
(shown in green) help enforce this criteria in that they are the only
graph classes which contain methods for adding or removing vertices
and edges. This is necessary as a precaution since it is difficult to
maintain a valid data structure for some graph types during construc-
tion. In particular, this can occur with the construction of a tree - it
is possible at an intermediate step during construction to have a graph
that is not a valid tree. By providing specialized mutable graph classes
for construction along with methods to safely convert them into more
specialized types, we ensure the validity of the data structures at all
times in the pipeline, while avoiding the excessive overhead from run-
time validation.

3.0.2 Data Transformations

As you look at the numerous data types utilized in an analysis pipeline
it become apparent that data transformations play a central role in the
end-to-end process. The efficient transformation of data from one form
to another is a key element of a functional, usable analysis toolkit.

Tables to Graphs: Typically an analyst is not only interested in
entities and attributes but also in the relationships and links between
entities. When these links are stored as tabular data (in a database or
flat files) we must provide a way to flexibly extract the entity relation-
ships. In Titan we implement this using the vtkTableToGraph filter.

To illustrate lets use the analysis of employee data; we have data
on employees, the employee’s publications and data on emails be-
tween employees. We hit the database with queries like "select * from
employee-table’, select * from employee-pubs’, and ’select * from
email-march-2010’, using the toolkit database drivers these queries
are returned as vtkTables. Figure 3 shows up the ways we might want
to construct relationships

e a) Email (From-To) would show us the email transaction network
between employees.

e b) Employee to Company would show us the relationship be-
tween employees and the companies they work for.

e ¢) Employee/Author to Article to Topic would give us a "publi-
cation map’ of which employees are collaborating and in which
areas.

You run For more details on this process see [18].

Tables to Trees: For the transformation of a table into a tree
we use two filters, vtkTableToTree and vtkGroupLeafNodes. vtkTable-
ToTree simply takes a table and creates a single rooted tree with the
table elements as leaves. Once all the data exist in this trivial tree
structure we use vtkGroupLeafNodes to organize it into an arbitrar-
ily leveled tree based on the series of vtkGroupLeafNodes filters used.
This allows us to organize our employee publication data in another
form for analysis, processing and display Figure 4.

(a)

(b)

(©

Physics

Fig. 3. How vtkTableToGraph translates an edge attribute table (left) into
graph edges (right) based on a link graph (center).

vtkTableToTree

vtkGrouplLeafNodes
(@)

vtkGrouplLeafNodes Author
vtkTableToTree

(b) vtkGroupLeafNodes = Author

vtkGrouplLeafNodes

Fig. 4. vtkTableToTree and vtkGroupLeafNodes used to convert our em-
ployee publication data into a tree.

Tables to DenseArrays: A table can also be viewed as a simple
dense array implementation. Specific methods for converting tabular
columns to columns in a matrix are available and can be used in a
memory efficient manner to avoid deep copies of the data to convert
between formats.

Graphs to SparseArrays: A alternate representation of a graph
is also a matrix. Methods are available for converting graphs to sparse
arrays (for memory efficiency) and from sparse arrays to dense arrays.
Sparse array solvers (including highly-parallel solvers) are also avail-
able for enabling a wide range of linear algebra methods to be applied
to these matrices.

4 MULTI-MODEL ANALYSIS

Multi-model analysis involves using several types of modeling tech-
niques with the data and presenting the results in multiple views, hy-
brid or combined formats. P2 utilizes several types of text analyses.
In this section, we outline many of them, including Latent Semantic
Analysis, Entity Extraction, Clustering, and contained graph searches.

The coupling of these analyses is a powerful technique and provides
greater access and insight into the document cache.

4.1 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a natural language processing tech-
nique used to analyze relationships between a set of documents and the
terms contained in the documents. This is accomplished by generating
sets of topics related to the documents and the terms. LSA utilizes a
term-document matrix, or frequency matrix, where rows correspond
to terms found in the document cache and columns represent the doc-
uments. Each value in the matrix is proportional to the frequency of a
term within the document (in an unweighted matrix each value would
be equivalent to the frequency of a term within a document).

Following the construction of the frequency matrix, the LSA
method finds a low-rank approximation to the term-document matrix.
The result of this rank-lowering is that several dimensions will be com-
bined to depend on more than a single term, mitigating the problems of
identifying synonymy', and developing topical clustering in the high
dimensional space. Rank-lowering also partially mitigates the prob-
lem of polysemy? by weighting terms that commonly occur together
in similar dimensions.

Rank-lowering can be accomplished in one of many ways, although
the preferred method is to utilize a Singular Value Decomposition
(SVD) of the frequency matrix. By selecting the k largest singular
values from this decomposition, along with the singular vectors, you
can get the rank k approximation of the original frequency matrix with
the smallest error. Each term and document vector in the original ma-
trix can be treated as residing in a topical space of k dimensions, and
we can evaluate documents in relation to each other by calculating
distances between documents in this k-dimensional space.

4.2 Clustering

Clustering in P2 is accomplished using the GMeans[7, 4, 6, 5] set of
clustering algorithms. The GMeans package has been incorporated
as a single filter within the Titan set of tools, and exposes all of the
options available from GMeans traditional command-line interface.

GMeans is a tool that generates a k-means style of clustering, incor-
porating four different distance or similarity measurement options and
several initialization methods to generate a hard clustering. Similarity
options for clustering include cosine or spherical k-means, Euclidian
distance, Kullback-Leibler divergence, and diametric distance. The P2
pipeline hard-codes the use of spherical k-means to calculate cluster
distances.

The input matrix to the GMeans filter may be of a dense or sparse-
type along with a target number of clusters desired (i.e., k). The output
is an array consisting of a cluster id for each of the documents in the
cache.

4.3 Entity Extraction

Entity extraction is the process of classifying and sorting textual el-
ements of a document into predefined categories, most typically per-
sons, locations, organizations, quantities, etc. Entity extraction is also
known as entity identification and named entity recognition (NER).
Entity extraction algorithms are commonly of two main algorithm
types: grammar or rule-based techniques and statistical models. The
grammar or rule-based techniques commonly out-perform the statisti-
cal models, but at the cost of substantial increases in development and
overhead by language experts. Statistical models, on the other hand,
must be trained using manually annotated training datasets (the larger
the training set, the more accurate the results). Training in a given
domain, or document collection, does not always translate well into a
new domain or with a new set of documents. This is true for both
grammar based and statistically based entity extraction techniques;

'synonymy - different words have similar meaning or convey the same
ideas, for instance, ‘physician’ and ‘doctor’

Zpolysemy - same word conveys different meanings, for instance, the term
‘bed’ has a different meaning in each of these phrases: ‘river bed’ versus ‘sleep-
ing bed’

Table 1. Titan graph algorithms provided.

Algorithm

Breadth-First Search (BFS)
Biconnected Components
Connected Components
Connection Subgraphs
Minimum Spanning Tree (MST)
Network Centrality
R-MAT Generator
Single Source Shortest Path
S-T Shortest Paths
Subgraph Isomorphism
wCNM Community Detection[2]

| BGL | MTGL | PBGL
X X

X X
X

XX KX

PR XX
>

therefore, tuning the extraction algorithms is beneficial for all new
data.

Entity extraction in P2 is accomplished using the Stanford Named
Entity Recognition (SNER) tools. SNER is a statistical model based
entity extraction tools that utilizes a conditional random field (CRF)
for labeling and parsing of sequential data. A conditional random field
is an undirected graphical model where each vertex (word) represents
a random variable whose distribution will be inferred and each edge
represets a dependency between two random variables. The parame-
ters of the distributions must be learned, and the basic assumption in
training a CRF is that some variables are always observed and oth-
ers variables will be inferred making it possible to train the model to
maximize the conditional probability between observed and inferred
variables. A CRF model can also be viewed as a Markov random field
that has been trained discriminatively.

Titan provides access to SNER via a single filter which takes a table
of input documents, with one document per row in the table. The out-
put is also a table containing a set of addresses into the document col-
lection of each entity identified, along with a tag identifying the type
of entity. The entity extraction model can be individualized for each
document’s mime-type, and standard models are provided for common
mime-types.

4.4 Contained Graph Search

Titan provides access to a variety of graph algorithms and heuristics
that are useful for the analysis of network data. A set of adapter classes
are provided to enable compatibility with third party graph libraries
including:

e Boost Graph Library (BGL)
e Parallel Boost Graph Library (PBGL)

e Multi-Threaded Graph Library (MTGL)

The fusion of multiple libraries into the pipeline architecture allows
application developers to apply the best features of each for a prob-
lem of interest. Further, Titan provides adapters with shallow-copy
semantics that minimize copying when crossing library boundaries,
an important consideration when working with large datasets. Table
1 provides a listing of available graph algorithms and their source li-
braries.

While Titan does not yet wrap the full set of algorithms provided by
these libraries we are incorporating additional capabilities continually.
Over time, Titan will provide pipeline components for most of the
algorithms provided by these libraries.

SMTGL Subgraph Isomorphism implements an inexact heuristic for
attributed-graphs only.

from ytk import *
from titan.MTGLGraphAnalysis import *

create a random graph
src = vtkRandomGraphSource ()

create MTGL CC filter
cc = vtkMTGLConnectedComponents ()
cc.l3etInputConnection (src.GetQutputPort ())

call BGL biconnected components
bicc = vtkBoostBiconnectedComponents ()
bicc.SetInputConnection(cc.GetQutputPort ())

send graph to visualization...
view = vtkGraphLayoutView/()
view.SetInputConnection (bicc.GetOutputPort ())

Fig. 5. Sample Titan pipeline created using Python.

5 SCRIPTING WITH TITAN

Titan provides automatic wrapping of every class enabling access to
pipeline filters from languages such as Python, Java, and Tcl. We
believe this feature is very useful, particularly as a prototyping tool
when developing data pipelines and full-fledged applications. Figure
5 demonstrates a sample Python script that creates a random graph
and then executes the connected components algorithm from MTGL
and the biconnected components algorithm from BGL. This example
demonstrates the flexibility of the pipeline architecture since we are
able to run graph algorithms from both BGL and MTGL on the same
graph without having to deal with data compatibility issues between
these libraries. Titan provides the adapters for these libraries enabling
seamless integration.

6 THE PIPELINE

For this task we leveraged the breadth of the toolkit to construct this
domain specific application.

e Database Drivers
e Web Server/Client tiers in Titan

e Latent Semantic Analysis (LSA) for text analysis

Document Clustering

e Statistics Components

Graph Algorithms

Protovis [3] (for presentation of results in a web browser)

While a detailed description of all of the functionality is beyond
the scope of this paper we will cover the components and their us-
age to address the use case. We begin the process by pulling the data
from the database with the database classes in the toolkit. Database
query results are returned as tables, which are then used to generate a
graph. Once we have the data in the form of a graph we then lever-
age several of the graph algorithms mentioned above in addition to the
weighted Clauset-Newman-Moore (WCNM) [2] community detection
algorithms. At a high level, the wCNM algorithm identifies commu-
nities by clustering vertices so that the edge density within a cluster is
much higher than the edge density between clusters. When this clus-
tering process finishes, each cluster is labeled as a community.

After identifying web communities, we use Titan components to
conduct textual analysis (LSA) on the raw web page text directly. This
process identifies significant topics and concepts within the database
of web pages. We extract topic scores for each web page and use
those as a basis for further document clustering. We also compute

the entropy of each term within the vocabulary in order to identify
terms of likely interest. The results of this analysis are are then finally
presented to the analyst as a web page consumable by any modern
browser. Clearly a significant amount of complexity in the text anal-
ysis process. Figures 8,9, and 10 illustrate the components in use and
how they are connected in the pipeline based toolkit.

7 THE USER INTERFACE

As we stated in the introduction an algorithm is only truly useful when
it can be deployed as part of a system. Here, we present two appli-
cations where we applied the Titan data structures and algorithms.
The first addresses a document-analysis use case. The second is in-
tended for exploration and analysis application and the second exam-
ple demonstrates an application that analyzes a database of web pages
obtained using a crawler.

After loading a corpus of documents, P2 computes document-to-
document similarities using LSA. This information is used to produce
a graph where individual documents are represented by nodes, and are
linked to other nodes when the document similarity exceeds a thresh-
old. Documents are also clustered into groups containing documents
that are similar to each other. Finally, we display the similarity graph
to the user in a tree-ring view as shown on the bottom-left corner of
the application window. The hierarchical nature of the tree-ring view
allows a large quantity of information to be conveyed in a compact,
visually appealing manner. The outer ring represents clusters and the
inner ring represents documents within each cluster. The interior of the
ring contains edges connecting similar documents. This view enables
the user to identify documents that are highly similar to documents in
other clusters.

In addition to document-to-document similarity, we also extract
named entities such as names, places, organizations, etc. from the
content of the documents using the Stanford Named Entity Recog-
nition tool (StanfordNER) [11]. StanfordNER is written entirely in
Java, which posed a challenge to the C++-based P2 application. To
overcome this, we created a generic means to call Java components
from within the C++ pipeline using JNI (Java Native Interface). As a
result of this work, any Java component may be integrated into a Titan
pipeline.

Using the named-entity information, we generate a document-entity
co-occurrence graph where nodes are documents or entities and enti-
ties are nodes and edges connect each entity to the documents in which
they appear. We then merge the document-similarity and document-
entity graphs together to produce a new graph containing both entity-
to-document relationships and document-to-document similarity rela-
tionships.

The central view focuses on a currently selected document. The
current selection may come from any of the views on the left or right
of the application. This view uses Qt’s built-in WebKit view, which
provides web-browser capabilities including standards-based HTML
document layout and CSS styling. The entities detected in the current
document are highlighted and may be hyperlinked to an appropriate
database to show additional information about the person, place, or
organization. Figure 6 shows an example of linking entities to the
corresponding page on Wikipedia.

Users are able to select specific entities that are interesting by drag-
ging them into the hotlist, which appears just below the list of named
entities. P2 then computes paths between entities, including the docu-
ments through which they are connected, that are interesting using the
connection subgraphs [9] algorithm. The connection subgraphs algo-
rithm attempts to find short, direct paths between nodes in a graph by
penalizing long paths as well as paths which pass through high-degree
nodes. This algorithm is more useful than a simple shortest-paths algo-
rithm when analyzing small-world graphs (such as those arising from
social networks) thanks to the penalty it assesses against high-degree
nodes. In a social network, for example, a high-degree node may rep-
resent a person such as a politician who has made a very large number
of very brief contacts with other people. Few of this person’s con-
tacts would be useful in describing substantive connections between
two entities. By penalizing such high-degree nodes, the connection

open database...
database =
vtk30LDatabase.CreateFromURL ("postgres: //blah)

database.Open ("")

setup guery...
query = database.GetQueryInstance ()

guery.SetQuery ("select source, target from

weblinks™)

populate table with gquery...
table = vtkRowQueryToTable ()
table.SetQuery (query)

convert table to graph...
graph = vtkTableToGraph ()
graph.AddInputConnection(table.GetOutputPort ())

send graph to visualization...
View = vtkGraphLayoutView()
View.SetInputConnection (graph.GetOutputPort ())

Fig. 6. Python psuedo-code performing a query against a database,
storing the results in a table, converting the data into a graph and dis-
playing the results (see Figure 11 for the results of this process, Figure 7
is generated by running the graph algorithms in Figure 5 and switching
the view to a vtkTreeRingView).

subgraphs algorithm is in effect trying to find connections between
people and entities that have a greater likelihood of being important.

Figure 7 shows the subgraph generated by computing the connec-
tion subgraphs between each entity in the hotlist. The result is a small
graph showing connections between entities that the user is interested
in and the documents in the corpus that relate them to each other.

P2 represents an early success of the Titan Toolkit to deliver an end-
to-end application to analysts for use in a production capacity. The
flexible pipeline architecture and component based nature of Titan en-
abled our team of developers to produce P2 within a short time period.
The ability to take a corpus of documents and automatically organize
them into groups containing similar topics, extract the named-entities
from them, and then link documents to entities in a searchable man-
ner has been well received by our analyst community. The dataflow
pipeline used to generate the application is detailed in Figures 8,9, and
10 and a screenshot of the final application is shown in Figure 11.

8 RESULTS

The P2 application was developed as a research prototype to test func-
tionality developed as part of a Sandia National Laboratories Lab-
Directed Research and Development (LDRD) program entitled the
“Networks Grand Challenge” (NGC). In terms of a prototypical appli-
cation to test and expose an analytic community to raw research being
conducted in the Labs’ research community, P2 was a major success.
This tool introduced the capabilities and talents to the analysis commu-
nity in a way that has whetted appetites and bolstered communication
between the research community and the analysis community that will
engender dialogs and cross-collaborations for many years to come.

8.1 User-Studies

Shortly after initial delivery, a brief study was conducted by
Stubblefield[17] to evaluate capabilities provided by the P2 applica-
tion, the interaction space the application defines and users’ activities
and experiences in using the tool. General concensus among analysts
confirmed that the P2 application had high potential value, but defi-
ciencies in design and engineering were needed to improve the tool’s
utility. This is to be expected of a tool designed to prototype capabili-
ties, and follow-on tools should take into account specific findings of

Gc?ﬂ?ﬂod Dy nomic Team pdt

Strategy Leaming pof
A Baltimoie
-~

Awk.pt
Manhatian
-_—

Database Confice ntialData, paf

Ernse mble Bites pcif

Keler-McNulty
.

. - TestingThe Untestable pf

Fig. 7. Detailed view named-entity/document similarity graph with con-
nection subgraphs algorithm linking entities together.

the report. Specific areas of concern were in tool-to-tool interactivity
(exporting findings in formats that can be evaluated within other tools),
providing for improved user interaction (i.e., allowing the user to in-
teract more heavily with the graph-based views), improved clustering
and user-guided clustering, additional statistically-based calculation
capabilities, and better support for iterative queries and processing.

9 CONCLUSIONS

We demonstrated the use of the Titan toolkit within the P2 application
showing the utility of integrating graph algorithms with text analysis
techniques to organize and analyze large corpuses of documents. The
utility of these algorithms and proper visualization techniques is also
shown in our web crawl data analysis in which we used visualization
techniques in our process of verifying the structure of a large incoming
data set.

The flexible pipeline architecture also eases the burden on appli-
cation development somewhat due to the uniform nature in which al-
gorithms are combined together into complex pipelines. As demon-
strated, rather complex data pipelines can be assembled to build end-
to-end applications that solve difficult problems.

Support for additional languages such as Python enables rapid pro-
totyping of experimental pipelines without the overhead of developing
C++ code which can save time and developer resources.

10 FUTURE WORKS

We recognize that a toolkit does not succeed without community sup-
port and contribution. We are actively seeking members of the com-
munity to collaborate with us on Titan 2.0 as users, contributors and
developers. Further documentation and checkout instructions for the
Titan toolkit can be found at http://titan.sandia.gov.

ACKNOWLEDGMENTS

The authors would like to thank the extended Titan Family”: Patri-
cia Crossno, Marcus Hanwell, Berk Geveci, John Greenfield, John
Harger, Kenneth Moreland, Thomas Otahal, Dave Partyka, Philippe
Pebay, David Rogers, Eric Stanton, and David Thompson.

REFERENCES

[1]

[2]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

B. B. Bederson, J. Grosjean, and J. Meyer. Toolkit design for interac-
tive structured graphics. IEEE Transactions on Software Engineering,
30:535-546, 2004.

J. W. Berry, B. Hendrickson, R. A. Laviolette, and C. A. Phillips. Tol-
erating the community detection resolution limit with edge weighting.
arXiv:0903.1072v2[physics.soc-ph], Mar. 2009.

M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE Transactions on Visualization and Computer Graphics (TVCG),
pages 1121-1128, Nov/Dec 2009.

1. S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large doc-
ument collections. In V. K. R. Grossman, C. Kamath and R. Namburu,
editors, Data Mining for Scientific and Engineering Applications, pages
357-381. Kluwer Academic Publishers, 2001. Invited book chapter.

I. S. Dhillon and Y. Guan. Clustering large and sparse co-occurrence
data. In Proceedings of the Workshop on Clustering High-Dimensional
Data and its Applications at the Third SIAM International Conference on
Data Mining, 2003.

I. S. Dhillon, Y. Guan, and J. Kogan. Iterative clustering of high dimen-
sional text data augmented by local search. In Proceedings of the 2002
IEEE International Conference on Data Mining, 2002.

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse
text data using clustering. Machine Learning, 42(1):143-175, Jan 2001.

D. M. Dunlavy, T. M. Shead, and E. T. Stanton. Paratext: Scalable text
modeling and analysis. ACM International Symposium on High Perfor-
mance Distributed Computing, June 2010.

C. Faloutsos, K. S. McCurley, and Tomkins. Fast discovery of connec-
tion subgraphs. Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’04), 2004.
J. D. Fekete. The infovis toolkit. 10th IEEE Symposium on Information
Visualization (InfoVis’04), pages 167-174, 2004.

J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local infor-
mation into information extraction systems by gibbs sampling. Proceed-
ings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL2005), pages 363-370, 2005.

E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for
drawing directed graphs. Software Engineering, 19(3):214-230, 1993.

J. Heer, S. K. Card, and J. A. Landay. Prefuse: A toolkit for interactive
information visualization. ACM Human Factors in Computing Systems
(CHI), pages 421-430, 2005.

Y. Koren and D. Harel. Graph drawing by high-dimensional embedding.
LNCS Graph Drawing (GD’02), 2528, 2002.

K. Martin and B. Hoffman. Mastering CMake. Kitware, Inc., 2008.

P. Pebay. Statistics. The VTK User’s Guide, ISBN: 978-1-930934-23-B,
Kitware, Inc., 11th ed.:192-198, 2010.

W. Stubblefield. An evaluation of the network grand challenge p2 pro-
totype from an interaction design perspective. SAND Report, August 24,
2010.

B. Wylie and J. Baumes. A unified toolkit for information and scien-
tific visualization. IS&T/SPIE Electronic Imaging, Visual Data Analytics,
2009.

vikTokenizer

DroppedDelimiters. [0x0009, 0x000€)
DroppedDelimiters: [0x0020, 0x0021)
DroppedDelimiters: [0x2000, 0x200¢)
DroppedDelimiters: [0x0021, 0x0030)
DroppedDelimiters: [0x003a, 0x0041)
DroppedDelimiters: [0x005b, 0x0061)
DroppedDelimiters: [0x007b, 0x007f)
DroppedDelimiters: [0x200c, 0x206f)
DroppedDelimiters: [Oxfeff, 0xff00)

vikTokenLengthFilter
Begin: 0
End: 3

vtk TokenLengthFilter
Begin: 33
End: 2147483647

vikNGramExtraction
N: 1

vikFoldCase
ResultArray: text

vikTokenValueFilter
Value Count: 439

vikTermDictionary

vikTermDocumentFrequencyMatrix
Lookup: 0

FeatureDimension: 0
Feature: 1

Fig. 8. Part one of the text processing pipeline; tokenization, case fold-
ing, term dictionary and term frequency matrix creation. This pipeline
(or a variant of it) is used for both the P2 application and the web crawler
application.

vikTrilinosSVD

Rark: 10

VIKPowereignting
Power. -0.5

vikScaleDimension

vikFrequencyMatrixWeighting VikBoostLogWeighting
FeatureDimension: 0 Base. 1
WeightType: 0 :

vikMaximumValuedindexArray

vikScaleDimension

Dimension: 0
Invert: 0

Dimension; 1
e

vikGMeansClustering

Fig. 10. Part three of the text processing pipeline; the SVD input is a
sparse term/document matrix, the output is a set of three dense matri-
ces: right singular vectors (term vs features), singular values, and left
singular vectors (terms vs concepts). The matrices are then weighted,
scaled and sent to the document clustering filter which groups docu-

ments in concept space.

vikScaleDimension

Fig. 9. Part two of the text processing pipeline; document features are
weighted, scaled, normalized, and scaled again in preparation for the
Trilinos Singular Value Decomposition (SVD) sparse matrix calculation.

Fig. 11. Document analysis and clustering application screenshot.

